
doi: 10.2166/ws.2024.174
handle: 11250/3181233
ABSTRACT This work outlines the performance of three variants of deep neural networks for leak detection in water distribution networks, namely – autoencoders (AEs), variational autoencoders (VAEs), and long short-term memory autoencoders (LSTM-AEs). The multivariate pressure signals reconstructed from these models are analysed for leakage identification. The leak onset time is estimated using a fast approximation sliding window technique, which computes statistical discrepancies in prediction errors. The performance of all three variants is validated using the widely studied L-Town benchmark network. Furthermore, their feasibility for real-world application is studied by applying them to a real-world case study representing the data availability and network design often found in smaller- and medium-sized utilities in Norway. The results for the benchmark network showed that AE and LSTM-AE showed comparable detection performance for abrupt leaks with VAE performing the least. For incipient leaks, the LSTM-AE showed better detection performance with few false-positives. For the real-world dataset, the performance was significantly lower due to the quantity and quality of data available, and the contradiction of inherent requirements of data-driven models. In addition, the analysis revealed that the positioning of pressure sensors in the network is critical for the leak detection performance of these models.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
