Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/pdf...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2019
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the Use of Randomness in Local Distributed Graph Algorithms

Authors: Ghaffari, Mohsen; Kuhn, Fabian;

On the Use of Randomness in Local Distributed Graph Algorithms

Abstract

We attempt to better understand randomization in local distributed graph algorithms by exploring how randomness is used and what we can gain from it: - We first ask the question of how much randomness is needed to obtain efficient randomized algorithms. We show that for all locally checkable problems for which polylog $n$-time randomized algorithms exist, there are such algorithms even if either (I) there is a only a single (private) independent random bit in each polylog $n$-neighborhood of the graph, (II) the (private) bits of randomness of different nodes are only polylog $n$-wise independent, or (III) there are only polylog $n$ bits of global shared randomness (and no private randomness). - Second, we study how much we can improve the error probability of randomized algorithms. For all locally checkable problems for which polylog $n$-time randomized algorithms exist, we show that there are such algorithms that succeed with probability $1-n^{-2^{\varepsilon(\log\log n)^2}}$ and more generally $T$-round algorithms, for $T\geq$ polylog $n$, that succeed with probability $1-n^{-2^{\varepsilon\log^2T}}$. We also show that polylog $n$-time randomized algorithms with success probability $1-2^{-2^{\log^\varepsilon n}}$ for some $\varepsilon>0$ can be derandomized to polylog $n$-time deterministic algorithms. Both of the directions mentioned above, reducing the amount of randomness and improving the success probability, can be seen as partial derandomization of existing randomized algorithms. In all the above cases, we also show that any significant improvement of our results would lead to a major breakthrough, as it would imply significantly more efficient deterministic distributed algorithms for a wide class of problems.

21 pages, conference version in ACM Symp. on Principles of Distributed Computing (PODC) 2019

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), Distributed, Parallel, and Cluster Computing (cs.DC)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Top 10%
Green