Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Information Sciencesarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Information Sciences
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An efficient parallel algorithm for mining weighted clickstream patterns

Authors: Huy Minh Huynh; Loan T. T. Nguyen; Bay Vo; Zuzana Komínková Oplatková; Philippe Fournier-Viger; Unil Yun;

An efficient parallel algorithm for mining weighted clickstream patterns

Abstract

Abstract In the Internet age, analyzing the behavior of online users can help webstore owners understand customers’ interests. Insights from such analysis can be used to improve both user experience and website design. A prominent task for online behavior analysis is clickstream mining, which consists of identifying customer browsing patterns that reveal how users interact with websites. Recently, this task was extended to consider weights to find more impactful patterns. However, most algorithms for mining weighted clickstream patterns are serial algorithms, which are sequentially executed from the start to the end on one running thread. In real life, data is often very large, and serial algorithms can have long runtimes as they do not fully take advantage of the parallelism capabilities of modern multi-core CPUs. To address this limitation, this paper presents two parallel algorithms named DPCompact-SPADE ( D epth load balancing P arallel Compact-SPADE) and APCompact-SPADE ( A daptive P arallel Compact-SPADE) for weighted clickstream pattern mining. Experiments on various datasets show that the proposed parallel algorithm is efficient, and outperforms state-of-the-art serial algorithms in terms of runtime, memory consumption, and scalability.

Country
Czech Republic
Keywords

parallelism, frequent pattern mining, weighted clickstream patterns

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!