
arXiv: 2411.09433
Software-defined systems revolutionized the management of hardware devices but introduced quality assurance challenges that remain to be tackled. For example, software defined networks (SDNs) became a key technology for the prompt reconfigurations of network services in many sectors including telecommunications, data centers, financial services, cloud providers, and manufacturing industry. Unfortunately, reconfigurations may lead to mistakes that compromise the dependability of the provided services. In this paper, we focus on the reconfigurations of network services in the satellite communication sector, and target security requirements, which are often hard to verify; for example, although connectivity may function properly, confidentiality may be broken by packets forwarded to a wrong destination. We propose an approach for FIeld-based Security Testing of SDN Configurations Updates (FISTS). First, it probes the network before and after configuration updates. Then, using the collected data, it relies on unsupervised machine learning algorithms to prioritize the inspection of suspicious node responses, after identifying the network nodes that likely match across the two configurations. Our empirical evaluation has been conducted with network data from simulated and real SDN configuration updates for our industry partner, a world-leading satellite operator. Our results show that, when combined with K-Nearest Neighbour, FISTS leads to best results (up to 0.95 precision and 1.00 recall). Further, we demonstrated its scalability.
9 Figures, 6 Tables, 1 Algorithm
Computer Science - Networking and Internet Architecture, Software Engineering (cs.SE), Networking and Internet Architecture (cs.NI), FOS: Computer and information sciences, Computer Science - Software Engineering
Computer Science - Networking and Internet Architecture, Software Engineering (cs.SE), Networking and Internet Architecture (cs.NI), FOS: Computer and information sciences, Computer Science - Software Engineering
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
