
Abstract This study aims to explore the role of brine salinity in achieving sustainable operation of membrane distillation (MD), particularly in hypersaline applications where highly concentrated or saturated solutions are treated. Given the state-of-the-art MD modeling work mainly focused on the mass and heat transfer phenomena for dilute systems, our simulation work predicts the trends of permeation flux in direct contact MD (DCMD) with elevated feed concentrations up to saturation, by a newly-developed exponential decay function. Also, a semi-empirical equation of the solute transport coefficient Sherwood number (Sh) is derived as Sh = (α1ωF + α2) Reβ Sc0.33, which for the first time incorporates the influence of feed concentration into the concentration polarization calculation in MD. Numerical analysis on the supersaturation ratio, concentration factor and concentration polarization effect showed that low to modest membrane permeability, reasonably high feed temperature and modest hydrodynamics (500
supersaturation, 0904 Chemical Engineering, concentration polarization, 500, DCMD, membrane scaling, College of Science and Engineering, Institute for Sustainability and Innovation (ISI), mass and heat transfer, feed-side solute transport
supersaturation, 0904 Chemical Engineering, concentration polarization, 500, DCMD, membrane scaling, College of Science and Engineering, Institute for Sustainability and Innovation (ISI), mass and heat transfer, feed-side solute transport
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 28 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
