Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020
Data sources: DOAJ
https://dx.doi.org/10.60692/h1...
Other literature type . 2020
Data sources: Datacite
https://dx.doi.org/10.60692/bw...
Other literature type . 2020
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Center-Based Stable Evolving Clustering Algorithm With Grid Partitioning and Extended Mobility Features for VANETs

خوارزمية تجميع متطورة مستقرة قائمة على المركز مع تقسيم الشبكة وميزات التنقل الموسعة لشبكات VANET
Authors: Mohammed Saad Talib; Aslinda Hassan; Thamer Alamery; Zuraida Abal Abas; Ali Abdul-Jabbar Mohammed; Ali Jalil Ibrahim; Nihad Ibrahim Abdullah;

A Center-Based Stable Evolving Clustering Algorithm With Grid Partitioning and Extended Mobility Features for VANETs

Abstract

La agrupación de VANET es un tema de investigación emergente que sirve en los sistemas de transporte inteligentes de la tecnología actual. Su objetivo es segmentar los vehículos en movimiento en el entorno vial en subgrupos denominados clústeres, con cabezales de clúster para permitir un enrutamiento eficaz y estable. La mayoría de los enfoques de agrupación de VANET se basan en modelos distribuidos que toman la decisión de crear agrupaciones sin una visión global de la distribución y la movilidad del vehículo en el entorno. Sin embargo, la disponibilidad de LTE y los largos rangos de estación base motivaron recientemente a los investigadores a proporcionar enfoques basados en el centro. A diferencia de los enfoques de agrupamiento basados en el centro existentes de los VANET, este artículo utiliza la fase de segmentación de carreteras denominada partición de cuadrícula antes de proporcionar información resumida al centro de agrupamiento. Además, presenta un enfoque integrado como una combinación de todas las tareas de agrupamiento, incluida la asignación, la selección de la cabeza del clúster, la eliminación y la fusión. La evaluación del enfoque propuesto denominado agrupamiento evolutivo basado en el centro basado en la partición de cuadrícula (CEC-GP) ha demostrado ser superior desde la perspectiva de la eficiencia, la estabilidad y la consistencia. Un porcentaje de mejora de la eficiencia en (CEC-GP) sobre los puntos de referencia de agrupamiento estable basado en el centro (CBSC) y el algoritmo de agrupamiento de datos en evolución (EDCA) es del 65% y el 394%, respectivamente.

Le regroupement de VANET est un sujet de recherche émergent qui sert dans les systèmes de transport intelligents de la technologie d'aujourd' hui. Il vise à segmenter les véhicules en mouvement dans l'environnement routier en sous-groupes appelés grappes, avec des têtes de grappe pour permettre un routage efficace et stable. La plupart des approches de clustering VANETs sont basées sur des modèles distribués qui prennent la décision de créer des clusters sans la vision globale de la distribution et de la mobilité du véhicule dans l'environnement. Cependant, la disponibilité de la LTE et de longues distances de stations de base a récemment motivé les chercheurs à fournir des approches centralisées. Contrairement aux approches de clustering centralisées existantes des VANET, cet article utilise la phase de segmentation des routes appelée partitionnement de grille avant de fournir des informations résumées au centre de clustering. En outre, il présente une approche intégrée comme une combinaison de toutes les tâches de clustering, y compris l'attribution, la sélection de tête de cluster, la suppression et la fusion. L'évaluation de l'approche proposée appelée clustering évolutif basé sur le centre basé sur le partitionnement de grille (CEC-GP) s'est avérée supérieure du point de vue de l'efficacité, de la stabilité et de la cohérence. Un pourcentage d'amélioration de l'efficacité de (CEC-GP) par rapport aux benchmarks Center based stable clustering (CBSC) et evolving data clustering algorithm (EDCA) est de 65% et 394% respectivement.

VANETs clustering is an emerging research topic that serves in the intelligent transportation systems of today's technology. It aims at segmenting the moving vehicles in the road environment into sub-groups named clusters, with cluster heads for enabling effective and stable routing. Most of the VANETs clustering approaches are based on distributed models which make the decision of clusters creation lacking the global view of the vehicle's distribution and mobility in the environment. However, the availability of the LTE and long ranges of base station motivated researchers recently to provide center-based approaches. Unlike existing center-based clustering approaches of VANETs, this article uses the road segmenting phase named grid partitioning before providing summarized information to the clustering center. Furthermore, it presents an integrated approach as a combination of all the clustering tasks including assigning, cluster head selection, removing, and merging. Evaluation of the proposed approach named center-based evolving clustering based on grid partitioning (CEC-GP) is proven superior from the perspective of efficiency, stability, and consistency. An improvement percentage of the efficiency in (CEC-GP) over the benchmarks Center based stable clustering (CBSC) and evolving data clustering algorithm (EDCA) is 65% and 394% respectively.

يعد تجميع VANETs موضوعًا بحثيًا ناشئًا يعمل في أنظمة النقل الذكية لتكنولوجيا اليوم. ويهدف إلى تقسيم المركبات المتحركة في بيئة الطريق إلى مجموعات فرعية تسمى مجموعات، مع رؤوس مجموعات لتمكين التوجيه الفعال والمستقر. تعتمد معظم مناهج تجميع VANETs على النماذج الموزعة التي تتخذ قرار إنشاء مجموعات تفتقر إلى الرؤية العالمية لتوزيع السيارة وتنقلها في البيئة. ومع ذلك، فإن توافر LTE والنطاقات الطويلة من الباحثين في المحطة الأساسية حفزوا مؤخرًا على توفير مناهج قائمة على المركز. على عكس مناهج التجميع القائمة على المركز الحالية لشبكات VANET، تستخدم هذه المقالة مرحلة تجزئة الطريق المسماة تقسيم الشبكة قبل تقديم معلومات موجزة إلى مركز التجميع. علاوة على ذلك، فإنه يقدم نهجًا متكاملًا كمزيج من جميع مهام التجميع بما في ذلك التعيين واختيار رأس المجموعة والإزالة والدمج. ثبت أن تقييم النهج المقترح المسمى التجميع العنقودي المتطور القائم على المركز بناءً على تقسيم الشبكة (CEC - GP) متفوق من منظور الكفاءة والاستقرار والاتساق. تبلغ نسبة تحسين الكفاءة في (CEC - GP) على المقارنات المعيارية للتجميع المستقر القائم على المركز (CBSC) وخوارزمية تجميع البيانات المتطورة (EDCA) 65 ٪ و 394 ٪ على التوالي.

Keywords

Artificial intelligence, Social Sciences, Geometry, Transportation, Vehicular Ad Hoc Networks, center-based clustering, Intelligent Transportation Systems, FOS: Economics and business, Internet of Vehicles, Engineering, Cluster analysis, Market segmentation, Machine learning, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Business, Electrical and Electronic Engineering, Grid, CURE data clustering algorithm, Stability (learning theory), Data mining, Marketing, Vehicular ad hoc networks, VANETs clustering, grid based-clustering, VANET Security, Correlation clustering, Traffic Flow Prediction and Forecasting, Building and Construction, Computer science, TK1-9971, evolving clustering, Physical Sciences, Vehicular Ad Hoc Networks and Communications, Transportation Modes, Electrical engineering. Electronics. Nuclear engineering, Consistency (knowledge bases), Mathematics, Understanding Human Mobility Patterns

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Top 10%
gold