
A Class-Weighted Convolutional Autoencoder (CW-CAE) is proposed in this paper to resolve the skewed class distribution found in lung nodule image datasets. The source of these images is the Lung Image Database Consortium image collection (LIDC-IDRI) comprising of lung Computed Tomography (CT) scans. The annotated CT scans are divided into image patches that are labeled as either ‘nodule’ or ‘non-nodule’ images. Understandably, the number of samples containing nodules is substantially less as compared to that of the non-nodules. To solve the class-imbalance issue and prevent bias in decision-making, a class-weight equal to the ratio of the total population to the class population is introduced. The class-weights are multiplied with the respective loss function associated with each class during the computation of the aggregate loss function in the training phase. The training module consists of a feature extractor which is the encoder part of a Convolutional Autoencoder (CAE) pre-trained on the lung nodule dataset, and a classifier comprising of randomly initialized fully connected layers at the output stage. Experiments prove the efficacy of our class-weighted approach for the imbalanced dataset as compared to the state of the art.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
