Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-98...
Part of book or chapter of book . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CW-CAE: Pulmonary Nodule Detection from Imbalanced Dataset Using Class-Weighted Convolutional Autoencoder

Authors: Seba Susan; Dhaarna Sethi; Kriti Arora;

CW-CAE: Pulmonary Nodule Detection from Imbalanced Dataset Using Class-Weighted Convolutional Autoencoder

Abstract

A Class-Weighted Convolutional Autoencoder (CW-CAE) is proposed in this paper to resolve the skewed class distribution found in lung nodule image datasets. The source of these images is the Lung Image Database Consortium image collection (LIDC-IDRI) comprising of lung Computed Tomography (CT) scans. The annotated CT scans are divided into image patches that are labeled as either ‘nodule’ or ‘non-nodule’ images. Understandably, the number of samples containing nodules is substantially less as compared to that of the non-nodules. To solve the class-imbalance issue and prevent bias in decision-making, a class-weight equal to the ratio of the total population to the class population is introduced. The class-weights are multiplied with the respective loss function associated with each class during the computation of the aggregate loss function in the training phase. The training module consists of a feature extractor which is the encoder part of a Convolutional Autoencoder (CAE) pre-trained on the lung nodule dataset, and a classifier comprising of randomly initialized fully connected layers at the output stage. Experiments prove the efficacy of our class-weighted approach for the imbalanced dataset as compared to the state of the art.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!