Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the VLDB Endowment
Article . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Stochastic SketchRefine : Scaling In-Database Decision-Making under Uncertainty to Millions of Tuples

Authors: Riddho R. Haque; Anh L. Mai; Matteo Brucato; Azza Abouzied; Peter J. Haas; Alexandra Meliou;

Stochastic SketchRefine : Scaling In-Database Decision-Making under Uncertainty to Millions of Tuples

Abstract

Decision making under uncertainty often requires choosing packages , or bags of tuples, that collectively optimize expected outcomes while limiting risks. Processing Stochastic Package Queries (SPQs) involves solving very large optimization problems on uncertain data. Monte Carlo methods create numerous scenarios , or sample realizations of the stochastic attributes of all the tuples, and generate packages with optimal objective values across these scenarios. The number of scenarios needed for accurate approximation—and hence the size of the optimization problem when using prior methods—increases with variance in the data, and the search space of the optimization problem increases exponentially with the number of tuples in the relation. Existing solvers take hours to process SPQs on large relations containing stochastic attributes with high variance. Besides enriching the SPaQL language to capture a broader class of risk specifications, we make two fundamental contributions toward scalable SPQ processing. First, we propose risk-constraint linearization (RCL), which converts SPQs into Integer Linear Programs (ILPs) whose size is independent of the number of scenarios used. Solving these ILPs gives us feasible and near-optimal packages. Second, we propose Stochastic SketchRefine, a divide and conquer framework that breaks down a large stochastic optimization problem into subproblems involving smaller subsets of tuples. Our experiments show that, together, RCL and Stochastic SketchRefine produce high-quality packages in orders of magnitude lower runtime than the state of the art.

Keywords

FOS: Computer and information sciences, Computer Science - Databases, Databases (cs.DB)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green