Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A multi-objective particle swarm optimisation algorithm for unequal sized dynamic facility layout problem with pickup/drop-off locations

Authors: Fariborz Jolai; Reza Tavakkoli-Moghaddam; Mohammad Taghipour;

A multi-objective particle swarm optimisation algorithm for unequal sized dynamic facility layout problem with pickup/drop-off locations

Abstract

This paper deals with a multi-objective unequal sized dynamic facility layout problem (DFLP) with pickup/drop-off locations. First, a mathematical model to obtain optimal solutions for small size instances of the problem is developed. Then, a multi-objective particle swarm optimisation (MOPSO) algorithm is implemented to find near optimal solutions. Two new heuristics to prevent overlapping of the departments and to reduce ‘unused gaps’ between the departments are introduced. The performance of the MOPSO is examined using some sets of available test problems in the literature and various random test problems in small, medium, and large sizes. The percentage of improvements on the initial solutions is calculated for small, medium and large size instances. Also, the generation metric and the space metric for non-dominated solutions are examined. These experiments show the good performance of the developed MOPSO and sensitivity analysis show the robustness of the obtained solutions.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!