Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eastern-European Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eastern-European Journal of Enterprise Technologies
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Grammatical categories determination for Turkish and Kazakh languages based on machine learning algorithms and fulfilling dictionaries of link grammar parser

Authors: Aigerim Yerimbetova; Madina Tussupova; Madina Sambetbayeva; Mussa Turdalyuly; Bakzhan Sakenov;

Grammatical categories determination for Turkish and Kazakh languages based on machine learning algorithms and fulfilling dictionaries of link grammar parser

Abstract

This research is aimed at identifying the parts of speech for the Kazakh and Turkish languages in an information retrieval system. The proposed algorithms are based on machine learning techniques. In this paper, we consider the binary classification of words according to parts of speech. We decided to take the most popular machine learning algorithms. In this paper, the following approaches and well-known machine learning algorithms are studied and considered. We defined 7 dictionaries and tagged 135 million words in Kazakh and 9 dictionaries and 50 million words in the Turkish language. The main problem considered in the paper is to create algorithms for the execution of dictionaries of the so-called Link Grammar Parser (LGP) system, in particular for the Kazakh and Turkish languages, using machine learning techniques. The focus of the research is on the review and comparison of machine learning algorithms and methods that have accomplished results on various natural language processing tasks such as grammatical categories determination. For the operation of the LGP system, a dictionary is created in which a connector for each word is indicated – the type of connection that can be created using this word. The authors considered methods of filling in LGP dictionaries using machine learning. The complexities of natural language processing, however, do not exclude the possibility of identifying narrower tasks that can already be solved algorithmically: for example, determining parts of speech or splitting texts into logical groups. However, some features of natural languages significantly reduce the effectiveness of these solutions. Thus, taking into account all word forms for each word in the Kazakh and Turkish languages increases the complexity of text processing by an order of magnitude

Keywords

алгоритмы машинного обучения, часть речи, аглютинативна мова, обработка естественного языка, обробка природної мови, алгоритми машинного навчання, machine learning algorithms, агглютинативный язык, Word2vec, natural language processing, частина мови, agglutinative language, part-of-speech

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 5
  • 3
    views
    5
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
3
5
Green
gold