
Automatic image segmentation plays an important role in the fields of medical image processing so that these fields constantly put forward higher requirements for the accuracy and speed of segmentation. In order to improve the speed and performance of the segmentation algorithm of medical images, we propose a medical image segmentation algorithm based on simple non-iterative clustering (SNIC). Firstly, obtain the feature map of the image by extracting the texture information of it with feature extraction algorithm; Secondly, reduce the image to a quarter of the original image size by downscaling; Then, the SNIC super-pixel algorithm with texture information and adaptive parameters which used to segment the downscaling image to obtain the superpixel mark map; Finally, restore the superpixel labeled image to the original size through the idea of the nearest neighbor algorithm. Experimental results show that the algorithm uses an improved superpixel segmentation method on downscaling images, which can increase the segmentation speed when segmenting medical images, while ensuring excellent segmentation accuracy.
medical image segmentation, simple non-iterative clustering, Computer applications to medicine. Medical informatics, R858-859.7, superpixel, Article, Spine, simple non-iterative clustering; superpixel; medical image segmentation, Image Processing, Computer-Assisted, Cluster Analysis, Tomography, X-Ray Computed, Algorithms
medical image segmentation, simple non-iterative clustering, Computer applications to medicine. Medical informatics, R858-859.7, superpixel, Article, Spine, simple non-iterative clustering; superpixel; medical image segmentation, Image Processing, Computer-Assisted, Cluster Analysis, Tomography, X-Ray Computed, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
