Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Water and...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Water and Climate Change
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/mv...
Other literature type . 2022
Data sources: Datacite
https://dx.doi.org/10.60692/m7...
Other literature type . 2022
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Monthly precipitation prediction using neural network algorithms in the Thua Thien Hue Province

التنبؤ الشهري بهطول الأمطار باستخدام خوارزميات الشبكة العصبية في مقاطعة ثوا ثين هوي
Authors: Nguyen Hong Giang; Yuren Wang; Dinh-Hieu Tran; Lê Anh Phương; Nguyễn Tiến Thịnh;

Monthly precipitation prediction using neural network algorithms in the Thua Thien Hue Province

Abstract

Abstract The prediction of precipitation is of importance in the Thua Thien Hue Province, which is affected by climate change. Therefore, this paper suggests two models, namely, the Seasonal Auto-Regressive Integrated Moving Average (SARIMA) model and the Long Short-Term Memory (LSTM) model, to predict the precipitation in the province. The input data are collected for analysis at three meteorological stations for the period 1980–2018. The two models are compared in this study, and the results showed that the LSTM model was more accurate than the SARIMA model for Hue, Aluoi, and Namdong stations for forecasting precipitation. The best forecast model is for Hue station (= 0.94, = 0.94, = 8.15), the second-best forecast model is for Aluoi station ( = 0.89, = 0.89, = 12.72), and the lowest level forecast is for Namdong station ( = 0.89, = 0.89, = 12.81). The study result may also support stakeholderswho apply these models with future data to mitigate natural disasters in Thua Thien Hue.

Keywords

Artificial neural network, Artificial intelligence, sarima, Environmental Engineering, Rainfall-Runoff Modeling, Electricity Price and Load Forecasting Methods, Precipitation, precipitation, Hue, lstm, Environmental technology. Sanitary engineering, Environmental science, Engineering, Meteorology, Hydrological Modeling using Machine Learning Methods, thua thien hue province, FOS: Electrical engineering, electronic engineering, information engineering, GE1-350, Electrical and Electronic Engineering, TD1-1066, Climatology, Global and Planetary Change, Geography, FOS: Environmental engineering, Load Forecasting, Groundwater Level Forecasting, Geology, FOS: Earth and related environmental sciences, Computer science, Environmental sciences, Algorithm, Environmental Science, Physical Sciences, Global Drought Monitoring and Assessment, Short-Term Forecasting, min–max normalization, Forecasting

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
gold