Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Visual Computerarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Visual Computer
Article . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Object recognition algorithm based on optimized nonlinear activation function-global convolutional neural network

Authors: Feng-Ping An; Jun-e Liu; Lei Bai;

Object recognition algorithm based on optimized nonlinear activation function-global convolutional neural network

Abstract

Traditional object recognition algorithms cannot meet the requirements of object recognition accuracy in the actual warehousing and logistics field. In recent years, the rapid development of the deep learning theory has provided a technical approach for solving the above problems, and a number of object recognition algorithms has been proposed based on deep learning, which have been promoted and applied. However, deep learning has the following problems in the application process of object recognition: First, the nonlinear modeling ability of the activation function in the deep learning model is poor; second, the deep learning model has a large number of repeated pooling operations during which information is lost. In view of these shortcomings, this paper proposes multiple-parameter exponential linear units with uniform and learnable parameter forms and introduces two learned parameters in the exponential linear unit (ELU), enabling it to represent piecewise linear and exponential nonlinear functions. Therefore, the ELU has good nonlinear modeling capabilities. At the same time, to improve the problem of losing information in the large number of repeated pooling operations, this paper proposes a new global convolutional neural network structure. This network structure makes full use of the local and global information of different layer feature maps in the network. It can reduce the problem of losing feature information in the large number of pooling operations. Based on the above ideas, this paper suggests an object recognition algorithm based on the optimized nonlinear activation function-global convolutional neural network. Experiments were carried out on the CIFAR100 dataset and the ImageNet dataset using the object recognition algorithm proposed in this paper. The results show that the object recognition method suggested in this paper not only has a better recognition accuracy than traditional machine learning and other deep learning models but also has a good stability and robustness.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!