
A new approach in multi-objective evolutionary optimization is decomposition. Decomposition is a basic method in old multi-objective optimization which in evolutionary multiobjective optimization, has not been widely used. Using this method, a multi-objective optimization problem is converted into a number of scalar subproblems, and all the subproblems are simultaneously optimized. In this paper, the performance and efficiency of the algorithm MOEA/D (multi-objective evolutionary algorithm based on decomposition) with the performance of two algorithms NSGA-II and MOPSO (evolution optimization methods based on dominance) for solving constrained portfolio optimization in Tehran Stock Exchange, has been compared. Portfolio return and its risk, has been considered as the optimization objectives and CvaR has been considered as a risk measure. The results indicate the high potential of these algorithms for constrained portfolio optimization. Also, the results indicate that the optimization algorithm based on decomposition has lower computational complexity, and Pareto front is more extensive than the other two methods. (Abstract)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
