
Three-dimensional (3D) point clouds are becoming an important part of the geospatial domain. During research on 3D point clouds, deep-learning models have been widely used for the classification and segmentation of 3D point clouds observed by airborne LiDAR. However, most previous studies used discriminative models, whereas few studies used generative models. Specifically, one unsolved problem is the synthesis of large-scale 3D point clouds, such as those observed in outdoor scenes, because of the 3D point clouds' complex geometric structure. In this paper, we propose a generative model for generating large-scale 3D point clouds observed from airborne LiDAR. Generally, because the training process of the famous generative model called generative adversarial network (GAN) is unstable, we combine a variational autoen-coder and GAN to generate a suitable 3D point cloud. We experimentally demonstrate that our framework can generate high-density 3D point clouds by using data from the 2018 IEEE GRSS Data Fusion Contest.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
