
Nonnegative matrix factorization (NMF) has been widely used to learn low-dimensional representations of data. However, NMF pays the same attention to all attributes of a data point, which inevitably leads to inaccurate representation. For example, in a human-face data set, if an image contains a hat on the head, the hat should be removed or the importance of its corresponding attributes should be decreased during matrix factorizing. This paper proposes a new type of NMF called entropy weighted NMF (EWNMF), which uses an optimizable weight for each attribute of each data point to emphasize their importance. This process is achieved by adding an entropy regularizer to the cost function and then using the Lagrange multiplier method to solve the problem. Experimental results with several data sets demonstrate the feasibility and effectiveness of the proposed method. We make our code available at https://github.com/Poisson-EM/Entropy-weighted-NMF.
FOS: Computer and information sciences, Computer Science - Machine Learning, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
