Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Mathematics of Operations Research
Article . 2002 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cost Allocation for a Tree Network with Heterogeneous Customers

Cost allocation for a tree network with heterogeneous customers.
Authors: Granot, D; Kuipers, J; Chopra, S;

Cost Allocation for a Tree Network with Heterogeneous Customers

Abstract

We analyze a cost allocation problem which could naturally arise from a situation wherein a tree network T = (N ∪ {0}, E), serving heterogeneous customers, has to be constructed. The customers, located at N, require some service from a central supplier, located at vertex 0. The customers have heterogeneous preferences for the level or quality of service received from the central supplier. We formulate the above cost allocation problem as a cooperative game, referred to as an extended tree game. The extended tree game is a proper extension of Megiddo's (1978) tree game, wherein all the customers have identical preferences regarding the level of service received. We prove that an extended tree game is convex, and we show that its Shapley value can be computed in 𝒪(p|N|) time, where p is the number of distinct preference levels. We further provide a complete facial description of the core polytope of an extended tree game, and demonstrate that even when there are only two classes of customers, the number of nonredundant core constraints could be exponential in |N|. Nevertheless, we are able to construct an 𝒪(p|N|) algorithm to check the core membership of an arbitrary cost allocation, which can be used to construct an 𝒪(p|N|3) combinatorial algorithm to compute the nucleolus of an extended tree game. Finally, we show that the complements of the facet-defining coalitions for the core are all connected in an auxiliary tree graph with node set N.

Keywords

SPANNING TREE, FLOW GAMES, facets, Resource and cost allocation (including fair division, apportionment, etc.), TOTALLY BALANCED GAMES, NUCLEOLUS, Cooperative games, polytope, strongly polynomial algorithm, Deterministic network models in operations research, polytope, facets, CORE, Shapley value, cooperative game, Games involving graphs, nucleolus, convex game

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!