Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Physical and Enginee...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Physical and Engineering Sciences in Medicine
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.21203/rs.3....
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2023
License: CC BY
Data sources: PubMed Central
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A novel computer modeling and simulation technique for bronchi motion tracking in human lungs under respiration

Authors: byeong-jun kim; Hyo Yeong Ahn; Chanhee Song; Dongman Ryu; Tae Sik Goh; Jung Sub Lee; Chiseung Lee;

A novel computer modeling and simulation technique for bronchi motion tracking in human lungs under respiration

Abstract

Abstract In this work, we proposed a novel computer modeling and simulation technique for motion tracking of lung bronchi (or tumors) under respiration using 9 cases of computed tomography (CT)-based patient-specific finite element (FE) models and Ogden’s hyperelastic model. In the fabrication of patient-specific FE models for the respiratory system, various organs such as the mediastinum, diaphragm, and thorax that could affect the lung motions during breathing were considered. To describe the nonlinear material behavior of lung parenchyma, the comparative simulation for biaxial tension-compression of lung parenchyma was carried out using several hyperelastic models in ABAQUS, and then, Ogden’s model was adopted as an optimal model. Based on the aforementioned FE models and Ogden’s material model, the 9 cases of respiration simulation were carried out from exhalation to inhalation, and the motion of lung bronchi (or tumors) was tracked. In addition, the changes in lung volume, lung cross-sectional area on the axial plane during breathing were calculated. Finally, the simulation results were quantitatively compared to the inhalation/exhalation CT images of 9 subjects to validate the proposed technique. Through the simulation, it was confirmed that the average relative errors of simulation to clinical data regarding to the displacement of 258 landmarks in the lung bronchi branches of total subjects were 1.10%~2.67%. In addition, the average relative errors of those with respect to the lung cross-sectional area changes and the volume changes in the superior-inferior direction were 0.20%~5.00% and 1.29 ~ 9.23%, respectively. Hence, it was considered that the simulation results were coincided well with the clinical data. The novelty of the present study is as follows: (1) The framework from fabrication of the human respiratory system to validation of the bronchi motion tracking is provided step by step. (2) The comparative simulation study for nonlinear material behavior of lung parenchyma was carried out to describe the realistic lung motion. (3) Various organs surrounding the lung parenchyma and restricting its motion were considered in respiration simulation. (4) The simulation results such as landmark displacement, lung cross-sectional area/volume changes were quantitatively compared to the clinical data of 9 subjects.

Related Organizations
Keywords

Lung Neoplasms, Computers, Movement, Respiration, Humans, Bronchi, Scientific Paper, Lung

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
hybrid