Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ MTAK: REAL (Library ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Materials Research and Technology
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mapping the microstructure and the mechanical performance of a combinatorial Co–Cr–Cu–Fe–Ni–Zn high-entropy alloy thin film processed by magnetron sputtering technique

Authors: Péter Nagy; Maria Wątroba; Zoltán Hegedűs; Johann Michler; László Pethö; Jakob Schwiedrzik; Zsolt Czigány; +1 Authors

Mapping the microstructure and the mechanical performance of a combinatorial Co–Cr–Cu–Fe–Ni–Zn high-entropy alloy thin film processed by magnetron sputtering technique

Abstract

The Co–Cr–Cu–Fe–Ni–Zn compositional library was studied on a combinatorial high-entropy alloy thin film processed on a silicon substrate by magnetron sputtering technique. The thickness of the coating was between 2 and 3 μm while the lateral dimension was 10 cm. The chemical composition in the layer depended on the location and for each constituent element the concentration varied between 5 and 42 at.%. The phase composition and the microstructure were mapped using synchrotron X-ray diffraction, and the crystallite size as well as the density of lattice defects (dislocations and twin faults) were determined by diffraction line profile profile analysis. In addition, selected locations were studied by transmission electron microscopy. The influence of the chemical composition on the microstructure and the mechanical behavior was revealed. The mechanical performance was characterized by nanoindentation mapping which determined the hardness and the elastic modulus versus the element concentrations. It was found that the coating contains single phase face-centered cubic (FCC) and body-centered cubic (BCC) regions as well as an intermediate two-phase area. In the whole combinatorial sample, the microstructure consisted of nanocrystalline columns growing perpendicular to the coating surface and having pores between them. Due to the porosity, the hardness and the elastic modulus were relatively low despite the nanostructure and the very high defect density. The highest hardness (3.4 GPa) and elastic modulus (119 GPa) were measured in the BCC region with the chemical composition of 10%Co–38%Cr–13%Cu–27%Fe–5%Ni–7%Zn (at.%).

Journal of materials research and technology 31, 47 - 61 (2024). doi:10.1016/j.jmrt.2024.06.059

Published by Elsevier, Rio de Janeiro

Keywords

info:eu-repo/classification/ddc/670, Mining engineering. Metallurgy, 670, TN1-997, vegyészeti technológia, TP Chemical technology / vegyipar, Hardness, High-entropy alloy, Thin film, QC173.4 Material science / anyagtudomány, TA Engineering (General). Civil engineering (General) / általános mérnöki tudományok, Microstructure, Magnetron sputtering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Green
gold