Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biosensors and Bioel...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biosensors and Bioelectronics
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On chip detection of glial cell-derived neurotrophic factor secreted from dopaminergic cells under magnetic stimulation

Authors: Renyuan Yang; Joseph Boldrey; David Jiles; Ian Schneider; Long Que;

On chip detection of glial cell-derived neurotrophic factor secreted from dopaminergic cells under magnetic stimulation

Abstract

Glial cell-derived neurotrophic factor (GDNF) is a small protein potently promoting the survival of dopaminergic and motor neurons. GDNF can be secreted from different types of cells including the dopaminergic neural cell line, N27. N27 cells, a rat dopaminergic neural cell line, is regarded as a suitable in vitro model for Parkinson's disease (PD) research. For PD treatment, transcranial magnetic stimulation (TMS), a noninvasive therapeutic method, showed beneficial clinical effects, but the mechanism for its benefit is not understood. Because GDNF is a potent neurotrophic factor, it is of great value to evaluate if GDNF secretion from N27 cells can be affected by magnetic stimulation (MS). However, the current methods for detecting GDNF are time-consuming and expensive. In this paper we outline the detection of GDNF secretion from N27 cells by ultrasensitive nanopore thin film sensors (nanosensor) for the first time. As low as 2 pg/mL GDNF can be readily detected by the nanosensor. Furthermore, we show that MS can promote GDNF secretion from N27 cells. Specifically, the GDNF concentration in N27 cell-conditioned media under MS treatment shows statistically significant increase up to 2-fold after 5 days in vitro in comparison with the control. This nanosensor along with the in vitro PD model N27 cells provides a low-cost, easy-to-use, sensitive approach for studying potential cell biological mechanisms of the clinical benefits of MS on PD.

Related Organizations
Keywords

570, Dopamine, Magnetic Phenomena, DegreeDisciplines::Engineering::Electrical and Computer Engineering::Biomedical, 610, DegreeDisciplines::Engineering::Chemical Engineering::Biochemical and Biomolecular Engineering, Dopaminergic cells, Parkinson Disease, Biosensing Techniques, Rats, Cell secretion, Nanopore thin film sensor, Animals, Glial Cell Line-Derived Neurotrophic Factor, Neurotrophic factors detection, Transcranial magnetic stimulation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!