
Purpose. The study aims to experimentally evaluate the effectiveness of using visual cues, namely ARToolKitPlus, ArUco markers and two-dimensional QR (quick response code) codes in the tasks of localizing unmanned vehicles (UVs) indoors. Methodology. To enable the implementation of the processes of localization and perception of unmanned vehicles based on visual marks (markers), the structure of the visual marks processing subsystem has been developed. An algorithm for the combined use of three types of visual markers – ARToolKitPlus, ArUco markers and QR codes – for localizing unmanned vehicles and identifying cargo is proposed using the example of an online store warehouse scenario. To conduct experiments on the markers, we chose a hardware and software tool such as the JeVois-A33 smart machine vision camera with the JeVois Markers Combo software module and the JeVois Inventor graphical interface. Findings. An experimental study of the possibility of correct recognition of visual marks for indoor working conditions was carried out. As a result of a series of experiments, the possibilities of correct recognition of visual marks such as ArUco, ARToolKitPlus markers and QR codes during scanning at right angles to the camera at a distance ranging from 0.3 to 2 meters were determined. Originality. The study obtained the probabilities of correct recognition of ArUco, ARToolKitPlus markers and two-dimensional QR codes in the conditions of localization of unmanned vehicles indoors. Practical value. The obtained results of the study can be used to create, simulate, and analyze the effectiveness of algorithms for localizing and perceiving unmanned vehicles indoors using appropriate visual markers. The proposed generalized structure of the visual marker processing subsystem of the localization and perception system can be used in the development of unmanned vehicle control systems.
Transportation engineering, TA1001-1280, unmanned vehicle, fiducial marker, visual tag, artoolkitplus, machine vision camera jevois-a33, aruco, localization, qr code
Transportation engineering, TA1001-1280, unmanned vehicle, fiducial marker, visual tag, artoolkitplus, machine vision camera jevois-a33, aruco, localization, qr code
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
