
arXiv: cs/0509097
In this paper, we present an iterative soft-decision decoding algorithm for Reed-Solomon codes offering both complexity and performance advantages over previously known decoding algorithms. Our algorithm is a list decoding algorithm which combines two powerful soft decision decoding techniques which were previously regarded in the literature as competitive, namely, the Koetter-Vardy algebraic soft-decision decoding algorithm and belief-propagation based on adaptive parity check matrices, recently proposed by Jiang and Narayanan. Building on the Jiang-Narayanan algorithm, we present a belief-propagation based algorithm with a significant reduction in computational complexity. We introduce the concept of using a belief-propagation based decoder to enhance the soft-input information prior to decoding with an algebraic soft-decision decoder. Our algorithm can also be viewed as an interpolation multiplicity assignment scheme for algebraic soft-decision decoding of Reed-Solomon codes.
Submitted to IEEE for publication in Jan 2005
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT), maximum-likelihood (ML) decoding, 004, interpolation multiplicity, Reed–Solomon (RS) codes, list decoding iterative decoding, soft-decision decoding, Belief propagation
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT), maximum-likelihood (ML) decoding, 004, interpolation multiplicity, Reed–Solomon (RS) codes, list decoding iterative decoding, soft-decision decoding, Belief propagation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 63 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
