Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Natural Hazards Rese...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Natural Hazards Research
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Natural Hazards Research
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Climate change-induced shifts in landslide susceptibility in São Sebastião (southeastern Brazil)

Authors: Enner Alcântara; Cheila Flávia Baião; Yasmim Carvalho Guimarães; José Antonio Marengo; José Roberto Mantovani;

Climate change-induced shifts in landslide susceptibility in São Sebastião (southeastern Brazil)

Abstract

Landslides are a pressing natural hazard, particularly in regions prone to extreme weather events, and their frequency is expected to rise due to climate change. This paper investigates landslide susceptibility in São Sebastião, a coastal region in southeastern Brazil, under various climate change scenarios. The study fills a critical gap in understanding how future precipitation changes driven by climate models could affect the area's susceptibility to landslides. Current assessments often overlook the combined effects of environmental variables and land-use dynamics under future climate conditions. To bridge this gap, this research integrates environmental variables, including Soil Moisture Index (SMI), slope degree, saturation, relief dissection, geomorphology, geology, and topographic position index (TPI), with land use and land cover (LULC) data. Scenarios from the Intergovernmental Panel on Climate Change (IPCC) for RCP2.6, RCP4.5, RCP6.0, and RCP8.5 CMIP5 (Climate Models Intercomparison Programme Version 5) models were applied to model the impact of changing precipitation patterns on landslide susceptibility. Using geospatial data and a weighted sum model, susceptibility maps were developed for each climate scenario and validated with a landslide inventory and receiver operating characteristic (ROC) analysis. The findings indicate a notable shift in landslide risk, with scenarios RCP6.0 and RCP8.5 showing significant increases in moderately susceptible areas due to higher precipitation intensities. Frequency Ratio (FR) analysis revealed varying levels of landslide susceptibility across scenarios, with RCP2.6 showing lower probabilities for moderate landslides (FR: 0.007946) compared to higher ratings for RCP4.5, RCP6.0, and RCP8.5 (FR: 1.663156 for high landslides). Slope and TPI emerged as the most influential variables, while land-use types, particularly urban areas and deforestation zones, showed heightened vulnerability in future scenarios.

Keywords

QE1-996.5, Climate adaptation strategies, QC801-809, Geophysics. Cosmic physics, Representative concentration pathways, Geology, Disaster risk reduction, Landslide susceptibility

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
gold
Related to Research communities