
arXiv: 1406.1215
Random networks are widely used for modeling and analyzing complex processes. Many mathematical models have been proposed to capture diverse real-world networks. One of the most important aspects of these models is degree distribution. Chung--Lu (CL) model is a random network model, which can produce networks with any given arbitrary degree distribution. The complex systems we deal with nowadays are growing larger and more diverse than ever. Generating random networks with any given degree distribution consisting of billions of nodes and edges or more has become a necessity, which requires efficient and parallel algorithms. We present an MPI-based distributed memory parallel algorithm for generating massive random networks using CL model, which takes $O(\frac{m+n}{P}+P)$ time with high probability and $O(n)$ space per processor, where $n$, $m$, and $P$ are the number of nodes, edges and processors, respectively. The time efficiency is achieved by using a novel load-balancing algorithm. Our algorithms scale very well to a large number of processors and can generate massive power--law networks with one billion nodes and $250$ billion edges in one minute using $1024$ processors.
Accepted in NPC 2015
FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC)
FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
