Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://www.medrxiv....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/bibm52...
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://doi.org/10.1101/2021.0...
Article . 2021 . Peer-reviewed
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Automated Bias Reduction in Deep Learning Based Melanoma Diagnosis using a Semi-Supervised Algorithm

Authors: Sauman Das;

Automated Bias Reduction in Deep Learning Based Melanoma Diagnosis using a Semi-Supervised Algorithm

Abstract

AbstractMelanoma is one of the most fatal forms of skin cancer and is often very difficult to differentiate from other benign skin lesions. However, if detected at its early stages, it can almost always be cured. Researchers and data scientists have studied this disease in-depth with the help of large datasets containing high-quality dermascopic images, such as those assembled by the International Skin Imaging Collaboration (ISIC). However, these images often lack diversity and over-represent patients with very common skin features such as light skin and having no visible body hair. In this study, we introduce a novel architecture called LatentNet which automatically detects over-represented features and reduces their weights during training. We tested our model on four distinct categories - three skin color levels corresponding to Type I, II, and III on the Fitzpatrick Scale, and images containing visible hair. We then compared the accuracy against the conventional Deep Convolutional Neural Network (DCNN) model trained using the standard approach (i.e. without detecting over-represented features) and containing the same hyper-parameters as the LatentNet. LatentNet showed significant performance improvement over the standard DCNN model with accuracy of 89.52%, 79.05%, 64.31%, and 64.35% compared to the DCNN accuracy of 90.41%, 70.82%, 45.28%, 56.52% in the corresponding categories, respectively. Differences in the average performance between the models were statistically significant (p < 0.05), suggesting that the proposed model successfully reduced bias amongst the tested categories. LatentNet is the first architecture that addresses racial bias (and other sources of bias) in deep-learning based Melanoma diagnosis.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%