Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020
Data sources: DOAJ
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Entropy Weight-Logarithmic Fuzzy Multiobjective Programming Method for Evaluating Emergency Evacuation in Crowded Places: A Case Study of a University Teaching Building

Authors: Zhian Huang; Wei Zhao; Zhenlu Shao; Yukun Gao; Yinghua Zhang; Ziyou Li; Jinyang Li; +1 Authors

Entropy Weight-Logarithmic Fuzzy Multiobjective Programming Method for Evaluating Emergency Evacuation in Crowded Places: A Case Study of a University Teaching Building

Abstract

The teaching buildings in colleges and universities are crowded and prone to accidents. The emergency evacuation capability of these buildings is evaluated by applying the methods of fault tree, entropy weight-logarithmic fuzzy multiobjective programming (E-LFMP) and fuzzy comprehensive evaluation. An index system was constructed using the basic event structure importance of the accident tree, and the influencing factors were more systematic. In order to improve the objectivity and rationality of the evaluation process and results, this study combines the entropy weight method and multi-objective fuzzy logarithmic programming (LFMP) method to form the entropy weight-logarithmic fuzzy multiobjective programming. Consequently, the weights of different levels of index factors were analyzed and calculated, and more comprehensive content was considered. The fuzzy comprehensive evaluation model is established to evaluate the emergency evacuation ability of a teaching building. The maximum membership degree is 0.4025, and the corresponding grade is “general”, indicating that its emergency evacuation ability must be improved. Based on the weight ratio and grade results of indicators in the evaluation model of emergency evacuation capability, safety rectification measures and suggestions were put forward from the aspects of improving information systems, widening evacuation channels and strengthening safety channel maintenance.

Related Organizations
Keywords

indicator system, Entropy weight-logarithmic fuzzy multiobjective programming (E-LFMP), fuzzy comprehensive evaluation, fault tree, Electrical engineering. Electronics. Nuclear engineering, evacuation capability, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
gold