Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Diyala Journal of En...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Diyala Journal of Engineering Sciences
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Diagnosing Gingiva Disease Using Artificial Intelligence Techniques

Authors: Rana Khalid Sabri; Lujain Younis Abdulkadir; AbdulSattar Mohammed Khidhir; Hiba Abdulkareem Saleh;

Diagnosing Gingiva Disease Using Artificial Intelligence Techniques

Abstract

Gingival and periodontal diseases, such as gingivitis and periodontitis, are critical public health concerns that can lead to severe complications if left untreated. Early and precise diagnosis is crucial to mitigate the progression of these conditions and improve oral health outcomes. This study investigates the application of convolutional neural networks (CNNs) in diagnosing gingival diseases using medical images, including X-rays and intraoral photographs. Several CNN architectures, including VGG16, Sequential CNN, MobileNet, InceptionV3, and suggestions for a voting method to enhance the prediction, were evaluated for their performance in classifying gingival conditions. MobileNet emerged as the most effective model, achieving a test accuracy of 92.73%; the suggested method relies mainly on its positive result. When the MobileNet's result is false, the process takes the voting result using the other methods. This boosts the accuracy to 96%. Surpassing other models in precision and recall metrics. Pre-processing techniques such as normalization using the CIELAB color space and data augmentation significantly enhanced model accuracy. The study employed robust evaluation methods, including 10-fold cross-validation and hyperparameter tuning, to ensure model reliability and generalizability. The findings highlight the transformative potential of AI-powered diagnostic tools in dental healthcare. By leveraging lightweight and efficient architectures like MobileNet, these tools can be deployed in resource-limited settings, offering real-time diagnostic support to healthcare professionals. Future work will focus on expanding datasets, exploring ensemble models, and improving interpretability to further enhance diagnostic accuracy and clinical applicability. 

Keywords

InceptionV3, Mechanics of engineering. Applied mechanics, Environmental engineering, MobileNet, TA213-215, TA349-359, TA170-171, Sequential, TK1-9971, Engineering machinery, tools, and implements, Chemical engineering, VGG16, TP155-156, Electrical engineering. Electronics. Nuclear engineering, Periodontal Diseases

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold