
In this work, we propose a new robust adaptive controller for a class of multi-input multi-output nonlinear systems subject to uncertain state delay. The proposed method is proven to yield semi-global asymptotic tracking despite the presence of additive input and output disturbances and parametric uncertainty in the system dynamics. An adaptive desired system compensation in conjunction with a continuous nonlinear integral feedback component is utilized in the design of the controller and Lyapunov-based techniques, are used to prove that the tracking error is asymptotically driven to zero. Numerical simulation results are presented to demonstrate the effectiveness of the proposed method.
Nonlinear feedback, Adaptive control systems, Asymptotic tracking, Input and outputs, Robust adaptive controller
Nonlinear feedback, Adaptive control systems, Asymptotic tracking, Input and outputs, Robust adaptive controller
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
