Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mechanics of Machine...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanics of Machines Mechanisms and Materials
Article . 2024 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PARALLELIZING OF COMPUTATIONS ON A GRAPHICS PROCESSING UNIT FOR ACCELERATING BOUNDARY ELEMENT CALCULATIONS IN MECHANICS

РАСПАРАЛЛЕЛИВАНИЕ ВЫЧИСЛЕНИЙ НА ГРАФИЧЕСКОМ ПРОЦЕССОРЕ ДЛЯ УСКОРЕНИЯ ГРАНИЧНО-ЭЛЕМЕНТНЫХ РАСЧЕТОВ В МЕХАНИКЕ
Authors: Sergei S. Sherbakov; Mikhail M. Polestchuk; Dzianis E. Marmysh;

PARALLELIZING OF COMPUTATIONS ON A GRAPHICS PROCESSING UNIT FOR ACCELERATING BOUNDARY ELEMENT CALCULATIONS IN MECHANICS

Abstract

In solving problems of computer modeling using various methods, accuracy and computational efficiency questions always arise. This study explores the application of two modifications of the boundary element method to solve the problem of potential distribution within a closed two-dimensional domain with a uniform potential distribution on its boundary. The first modification involves using three nonlinear shape functions instead of one. The second modification applies the Galerkin method to the boundary element approach with three nonlinear shape functions. The essence of this modification lies in the fact that the system of equations is formulated in integral form over the entire boundary element, rather than at collocation points. In addition to this, the paper describes and investigates the advantages and disadvantages of the smoothing modification applied to these approaches. Since the influence matrix consists of independently computable elements, parallelization of calculations using NVIDIA CUDA technology has been proposed to enhance computational efficiency, significantly accelerating the calculation of interaction matrix. The choice of this technology is advantageous due to the prevalence of NVIDIA graphics accelerators in almost every personal computer or laptop, as well as it is easy to use. The study presents an approach to the application of this technology and demonstrates the results, showing the acceleration of parallelized calculations which show the dependence on the number of boundary elements. A comparison of the efficiency of the selected technology when applied to two methods, collocation and Galerkin, is also presented, indicating a significant speedup of up to 22 times by computing the influence matrix of the boundary elements.

Keywords

nonlinear shape functions, nvidia cuda, interaction matrix, boundary element method, galerkin method, collocation method, numerical modeling, computational acceleration, TJ1-1570, Mechanical engineering and machinery, algorithm parallelization, potential distribution

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold