
To support large vocabulary handwriting recognition in standard computer platforms, a fast algorithm for hidden Markov model alignment is necessary. To address this problem, we propose a non-heuristic fast decoding algorithm which is based on hidden Markov model representation of characters. The decoding algorithm breaks up the computation of word likelihoods into two levels: state level and character level. Given an observation sequence, the two level decoding enables the reuse of character likelihoods to decode all words in the lexicon, avoiding repeated computation of state sequences. In an 80,000-word recognition task, the proposed decoding algorithm is about 15 times faster than a conventional Viterbi algorithm, while maintaining the same recognition accuracy.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
