Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Natural and Engineer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Natural and Engineering Sciences
Article . 2018 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Natural and Engineering Sciences
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2021
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Generative Autoencoder Kernels on Deep Learning for Brain Activity Analysis

Authors: ALTAN, Gokhan; KUTLU, Yakup;

Generative Autoencoder Kernels on Deep Learning for Brain Activity Analysis

Abstract

Deep Learning (DL) is a two-step classification model that consists feature learning, generating feature representations using unsupervised ways and the supervised learning stage at the last step of model using at least two hidden layers on the proposed structures by fully connected layers depending on of the artificial neural networks. The optimization of the predefined classification parameters for the supervised models eases reaching the global optimality with exact zero training error. The autoencoder (AE) models are the highly generalized ways of the unsupervised stages for the DL to define the output weights of the hidden neurons with various representations. As alternatively to the conventional Extreme Learning Machines (ELM) AE, Hessenberg decomposition-based ELM autoencoder (HessELM-AE) is a novel kernel to generate different presentations of the input data within the intended sizes of the models. The aim of the study is analyzing the performance of the novel Deep AE kernel for clinical availability on electroencephalogram (EEG) with stroke patients. The slow cortical potentials (SCP) training in stroke patients during eight neurofeedback sessions were analyzed using Hilbert-Huang Transform. The statistical features of different frequency modulations were fed into the Deep ELM model for generative AE kernels. The novel Deep ELM-AE kernels have discriminated the brain activity with high classification performances for positivity and negativity tasks in stroke patients.

Related Organizations
Keywords

Computer Software, FOS: Computer and information sciences, Computer Science - Machine Learning, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Deep Learning;SCP;Hilbert-Huang Transform;Autoencoder;Deep ELM, Bilgisayar Yazılımı, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Green
gold