Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digital library (rep...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Biophotonics
Article . 2021 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ex vivo three‐dimensional elemental imaging of mouse brain tissue block by laser‐induced breakdown spectroscopy

Authors: Qingyu Lin; Shuai Wang; Yixiang Duan; Valery V Tuchin;

Ex vivo three‐dimensional elemental imaging of mouse brain tissue block by laser‐induced breakdown spectroscopy

Abstract

AbstractMeasurement and reconstruction of an elemental image of large brain tissue will be beneficial to the diagnosis of neurological brain diseases. Herein, laser‐induced breakdown spectroscopy (LIBS) is introduced for three dimensional (3D) elemental analysis of paraffin‐embedded mouse brain tissue blocks. It is used for the first time towards the mapping of mouse brain block samples. A micro‐LIBS prototype is developed for brain elemental imaging and a layer‐by‐layer approach is used to reconstruct the 3D distribution of Ca, Mg, Na, Cu, and P in the brain tissue. Images are captured with 50 μm lateral resolution and 300 μm depth resolution. The images show that the reclamation area of the cortex surface is enriched with Ca and Mg. In contrast, the Cu distribution is circular and is found primarily in the entirety of the cerebral cortex for the paraffin‐embedded brain samples. Elemental imaging results suggest that the highest P intensity is found in the cerebellum nearby the middle sagittal plane in the left‐brain paraffin block. These preliminary results indicate that LIBS is a potentially powerful tool for elemental bioimaging of the whole brain and may further improve the understanding of complex brain mechanisms.

Country
Russian Federation
Keywords

Diagnostic Imaging, Mice, трехмерная визуализация, Lasers, Spectrum Analysis, спектроскопия лазерного пробоя, Animals, Brain, мозг мыши

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Green