
arXiv: 2504.03808
With the advent of the post-Moore era, the 2.5-D advanced package is a promising solution to sustain the development of very large-scale integrated circuits. However, the thermal placement of chiplet, due to the high complexity of thermal simulation, is very challenging. In this paper, a surrogate-assisted simulated annealing algorithm is proposed to simultaneously minimize both the wirelength and the maximum temperature of integrated chips. To alleviate the computational cost of thermal simulation, a radial basis function network is introduced to approximate the thermal field, assisted by which the simulated annealing algorithm converges to the better placement in less time. Numerical results demonstrate that the surrogate-assisted simulated annealing algorithm is competitive to the state-of-the-art thermal placement algorithms of chiplet, suggesting its potential application in the agile design of 2.5D package chip.
FOS: Computer and information sciences, Computer Science - Other Computer Science, Other Computer Science (cs.OH)
FOS: Computer and information sciences, Computer Science - Other Computer Science, Other Computer Science (cs.OH)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
