
In this paper, we propose a new method for fuzzy adaptation of the Gap Generation and mutation parameters in Genetic algorithms to optimize Fuzzy Systems used as integration methods in modular neural networks for multimodal biometrics. The Genetic Algorithm is an optimization method inspired on the evolutionary ideas of natural selection and genetics; therefore, we propose an improvement to the convergence of the genetic algorithms using fuzzy logic. Simulation results show that the proposed approach improves the performance of Genetic Algorithms. A comparison of the proposed method using type-1 fuzzy logic for dynamic parameter adaptation with respect to the original Genetic Algorithms approach is presented. Additionally, a statistical test is presented to prove the performance enhancement in the application provided by fuzzy parameter adaptation in the genetic algorithm. The main contribution in this work is the fuzzy adaptation of parameters in the genetic algorithm using type-1 fuzzy logic and with this finding the optimal values of the parameters of the fuzzy integrators, to improve the recognition percentage of the modular neural network for multimodal biometrics.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
