
handle: 11392/2415356
The Traveling Salesperson Problem (TSP) is one of the best-known problems in computer science. The Euclidean TSP is a special case in which each node is identified by its coordinates on the plane and the Euclidean distance is used as cost function. Many works in the Constraint Programming (CP) literature addressed the TSP, and use as benchmark Euclidean instances; however the usual approach is to build a distance matrix from the points coordinates, and then address the problem as a TSP, disregarding the information carried by the points coordinates for constraint propagation. In this work, we propose to use geometric information, present in Euclidean TSP instances, to improve the filtering power. In order to have a declarative approach, we implemented the filtering algorithms in Constraint Logic Programming on Finite Domains (CLP(FD)).
Constraint Satisfaction and Optimization, Constraint Optimization, Global Constraints, Knowledge Representation and Reasoning, Logic Programming, Traveling Salesperson Problem
Constraint Satisfaction and Optimization, Constraint Optimization, Global Constraints, Knowledge Representation and Reasoning, Logic Programming, Traveling Salesperson Problem
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
