Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PARTIALLY PIPELINED VLSI IMPLEMENTATION OF BLOWFISH ENCRYPTION/DECRYPTION ALGORITHM

Authors: P. KARTHIGAIKUMAR; K. BASKARAN;

PARTIALLY PIPELINED VLSI IMPLEMENTATION OF BLOWFISH ENCRYPTION/DECRYPTION ALGORITHM

Abstract

Information security has always been important in all aspects of life as technology controls various operations. Cryptography provides a layer of security in cases where the medium of transmission is susceptible to interception, by translating a message into a form that cannot be read by an unauthorized third party. All non-quantum transmission media known today are capable of being intercepted in one way or another. This paper seeks to implement a novel partial pipelined, robust architecture of Blowfish algorithm in hardware. Blowfish algorithm has no known cryptanalysis. The best proven attack against Blowfish till date is an exhaustive brute-force attack. This makes Blowfish an attractive cryptographic algorithm since it is not susceptible to any reasonable attack. The hardware implementation of Blowfish would be a powerful tool for any mobile device, or any technology requiring strong encryption. The proposed design uses the core_slow library for worst-case scenario analysis and attains an incredible encryption speed of 2670 MBits/sec and decryption speed of 2642 MBits/sec. The area is 5986 LUT's and the power is a mere 77 mW.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!