Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Soft Computi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Soft Computing
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A simple and efficient real-coded genetic algorithm for constrained optimization

Authors: Yao-Chen Chuang; Chyi-Tsong Chen; Chyi Hwang;

A simple and efficient real-coded genetic algorithm for constrained optimization

Abstract

A novel and efficient RCGA for constrained optimization has been proposed.The proposed RCGA integrates three effective and novel evolutionary operators named RS, DBX and DRM.The proposed RCGA is proven to have a small complexity index and outperform many state-of-the-art algorithms.The proposed RCGA has been successfully applied to optimize the GaAs film-growth performance of an MOCVD process. This paper presents a simple and efficient real-coded genetic algorithm (RCGA) for constrained real-parameter optimization. Different from some conventional RCGAs that operate evolutionary operators in a series framework, the proposed RCGA implements three specially designed evolutionary operators, named the ranking selection (RS), direction-based crossover (DBX), and the dynamic random mutation (DRM), to mimic a specific evolutionary process that has a parallel-structured inner loop. A variety of benchmark constrained optimization problems (COPs) are used to evaluate the effectiveness and the applicability of the proposed RCGA. Besides, some existing state-of-the-art optimization algorithms in the same category of the proposed algorithm are considered and utilized as a rigorous base of performance evaluation. Extensive comparison results reveal that the proposed RCGA is superior to most of the comparison algorithms in providing a much faster convergence speed as well as a better solution accuracy, especially for problems subject to stringent equality constraints. Finally, as a specific application, the proposed RCGA is applied to optimize the GaAs film growth of a horizontal metal-organic chemical vapor deposition reactor. Simulation studies have confirmed the superior performance of the proposed RCGA in solving COPs.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!