
AbstractA Random test generator generates executable tests together with their expected results. In the form of a noise-maker, it seeds the program with conditional scheduling primitives (such as yield()) that may cause context switches. As a result different interleavings are potentially produced in different executions of the program. Determining a-priori the set of seeded locations required for a bug to manifest itself is rarely possible.This work proposes to reformulate random test generation of concurrent Java programs as a search problem. Hence, it allows applying a set of well known search techniques from the domain of AI to the input space of the test generator. By iteratively refining the input parameters fed to the test generator, the search process creates testing scenarios (i.e. interleavings) that maximizes predefined objective functions. We develop geneticFinder, a noise-maker that uses a genetic algorithm as a search method. We demonstrate our approach by maximizing two objective functions: the high manifestation rate of concurrent bugs and the exporting of a high degree of debugging information to the user. Experimental results show our approach is effective.
concurrent Java, Random test generator, geneticFinder, Theoretical Computer Science, Computer Science(all)
concurrent Java, Random test generator, geneticFinder, Theoretical Computer Science, Computer Science(all)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
