Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY SA
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hierarchical-embedding autoencoder with a predictor (HEAP) as efficient architecture for learning long-term evolution of complex multi-scale physical systems

Authors: Khrabry, Alexander; Startsev, Edward; Powis, Andrew; Kaganovich, Igor;

Hierarchical-embedding autoencoder with a predictor (HEAP) as efficient architecture for learning long-term evolution of complex multi-scale physical systems

Abstract

We propose a novel efficient architecture for learning long-term evolution in complex multi-scale physical systems which is based on the idea of separation of scales. Structures of various scales that dynamically emerge in the system interact with each other only locally. Structures of similar scale can interact directly when they are in contact and indirectly when they are parts of larger structures that interact directly. This enables modeling a multi-scale system in an efficient way, where interactions between small-scale features that are apart from each other do not need to be modeled. The hierarchical fully-convolutional autoencoder transforms the state of a physical system not just into a single embedding layer, as it is done conventionally, but into a series of embedding layers which encode structures of various scales preserving spatial information at a corresponding resolution level. Shallower layers embed smaller structures on a finer grid, while deeper layers embed larger structures on a coarser grid. The predictor advances all embedding layers in sync. Interactions between features of various scales are modeled using a combination of convolutional operators. We compare the performance of our model to variations of a conventional ResNet architecture in application to the Hasegawa-Wakatani turbulence. A multifold improvement in long-term prediction accuracy was observed for crucial statistical characteristics of this system.

Keywords

Plasma Physics (physics.plasm-ph), FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, FOS: Physical sciences, Physics - Plasma Physics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green