
arXiv: 2505.18857
We propose a novel efficient architecture for learning long-term evolution in complex multi-scale physical systems which is based on the idea of separation of scales. Structures of various scales that dynamically emerge in the system interact with each other only locally. Structures of similar scale can interact directly when they are in contact and indirectly when they are parts of larger structures that interact directly. This enables modeling a multi-scale system in an efficient way, where interactions between small-scale features that are apart from each other do not need to be modeled. The hierarchical fully-convolutional autoencoder transforms the state of a physical system not just into a single embedding layer, as it is done conventionally, but into a series of embedding layers which encode structures of various scales preserving spatial information at a corresponding resolution level. Shallower layers embed smaller structures on a finer grid, while deeper layers embed larger structures on a coarser grid. The predictor advances all embedding layers in sync. Interactions between features of various scales are modeled using a combination of convolutional operators. We compare the performance of our model to variations of a conventional ResNet architecture in application to the Hasegawa-Wakatani turbulence. A multifold improvement in long-term prediction accuracy was observed for crucial statistical characteristics of this system.
Plasma Physics (physics.plasm-ph), FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, FOS: Physical sciences, Physics - Plasma Physics
Plasma Physics (physics.plasm-ph), FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, FOS: Physical sciences, Physics - Plasma Physics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
