
arXiv: 2301.05108
Dynamically typed languages such as Python have become very popular. Among other strengths, Python's dynamic nature and its straightforward linking to native code have made it the de-facto language for many research areas such as Artificial Intelligence. This flexibility, however, makes static analysis very hard. While creating a sound, or a soundy, analysis for Python remains an open problem, we present in this work Serenity, a framework for static analysis of Python that turns out to be sufficient for some tasks. The Serenity framework exploits two basic mechanisms: (a) reliance on dynamic dispatch at the core of language translation, and (b) extreme abstraction of libraries, to generate an abstraction of the code. We demonstrate the efficiency and usefulness of Serenity's analysis in two applications: code completion and automated machine learning. In these two applications, we demonstrate that such analysis has a strong signal, and can be leveraged to establish state-of-the-art performance, comparable to neural models and dynamic analysis respectively.
FOS: Computer and information sciences, Computer Science - Programming Languages, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Programming Languages (cs.PL)
FOS: Computer and information sciences, Computer Science - Programming Languages, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Programming Languages (cs.PL)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
