Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Serenity: Library Based Python Code Analysis for Code Completion and Automated Machine Learning

Authors: Zhao, Wenting; Abdelaziz, Ibrahim; Dolby, Julian; Srinivas, Kavitha; Helali, Mossad; Mansour, Essam;

Serenity: Library Based Python Code Analysis for Code Completion and Automated Machine Learning

Abstract

Dynamically typed languages such as Python have become very popular. Among other strengths, Python's dynamic nature and its straightforward linking to native code have made it the de-facto language for many research areas such as Artificial Intelligence. This flexibility, however, makes static analysis very hard. While creating a sound, or a soundy, analysis for Python remains an open problem, we present in this work Serenity, a framework for static analysis of Python that turns out to be sufficient for some tasks. The Serenity framework exploits two basic mechanisms: (a) reliance on dynamic dispatch at the core of language translation, and (b) extreme abstraction of libraries, to generate an abstraction of the code. We demonstrate the efficiency and usefulness of Serenity's analysis in two applications: code completion and automated machine learning. In these two applications, we demonstrate that such analysis has a strong signal, and can be leveraged to establish state-of-the-art performance, comparable to neural models and dynamic analysis respectively.

Keywords

FOS: Computer and information sciences, Computer Science - Programming Languages, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Programming Languages (cs.PL)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green