Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Computational and St...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Computational and Structural Biotechnology Journal
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY NC ND
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Lateral walking gait phase recognition for hip exoskeleton by denoising autoencoder-LSTM

Authors: Mingxiang Luo; Xiaoli Dong; Hongliu Yu; Mingming Zhang; Xinyu Wu; Worawarit Kobsiriphat; Jing-Xin Wang; +1 Authors

Lateral walking gait phase recognition for hip exoskeleton by denoising autoencoder-LSTM

Abstract

Lateral resistance walk is an effective way to strengthen the abductor muscles of the hip. Accurate lateral walking gait recognition is the prerequisite for exoskeletons to be applied to lateral walking exercises. This paper proposes a denoising autoencoder-LSTM (DAE-LSTM) algorithm for lateral walking gait recognition. Nine sets of IMU data at three speeds and three strides of ten subjects were collected. Four lateral walking gait phases of narrow double support (NDS), guided foot swing (GFS), wide double support (WDS) and following leg swing (FLS) were recognized. The recognition performance of random forest (RF), support vector machine (SVM), k-nearest neighbors (KNN), neural networks (NN) and DAE-LSTM were compared. The average cross-subject recognition accuracy of DAE-LSTM was 90.2 %, which was higher than the other four models and previous work. For each frame of IMU data, the average recognition time of DAE-LSTM is 0.383 ms, which is 5.32 ms higher than the previous work. When the signal-to-noise ratio (SNR) is greater than 100:1, the accuracy of the DAE-LSTM model is higher than 90.0 %, and the accuracy of the other four models were less than 85 %. The results show that the proposed algorithm can achieve the requirements of recognition accuracy, model recognition time and model robustness for application in exoskeleton.

Keywords

Hip exoskeleton, DAE-LSTM, Lateral walking gait recognition, TP248.13-248.65, IMUs, Biotechnology, Research Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Top 10%
Top 10%
Green
gold
Related to Research communities