Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Engarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eng
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eng
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impact of Spatial Rainfall Scenarios on River Basin Runoff Simulation a Nan River Basin Study Using the Rainfall-Runoff-Inundation Model

Authors: Kwanchai Pakoksung;

Impact of Spatial Rainfall Scenarios on River Basin Runoff Simulation a Nan River Basin Study Using the Rainfall-Runoff-Inundation Model

Abstract

This study aims to investigate the impact of spatial rainfall distribution scenarios from ground observation stations on runoff simulation using hydrological modeling specific to the Rainfall-Runoff-Inundation (RRI) model. The RRI model was applied with six different spatial distribution scenarios of input rainfall, including Inverse Distance Weight (IDW), Thiessen polygon (TSP), Surface Polynomial (SPL), Simple kriging (SKG), and Ordinary kriging (OKG), to simulate the runoff of a 13,000 km2 watershed, namely the Nan River Basin in Thailand. This study utilized data from the 2014 storm event, incorporating temporal information from 28 rainfall stations to estimate rainfall in the spatial distribution scenarios. The six statistics, Volume Bias, Peak Bias, Root Mean Square Error, Correlation, and Mean Bias, were used to determine the accuracy of the estimated rainfall and runoff. Overall, the Simple kriging (SKG) method outperformed the other scenarios based on the statistical values to validate with measured rainfall data. Similarly, SKG demonstrated the closest match between simulated and observed runoff, achieving the highest correlation (0.803), the lowest Root Mean Square Error (164.48 cms), and high Nash-Sutcliffe Efficiency coefficient (0.499) values. This research underscores the practical significance of spatial interpolation methods, such as SKG, in combination with digital elevation models (DEMs) and landuse/soil type datasets, in delivering reliable runoff simulations considering the RRI model on the river basin scale.

Related Organizations
Keywords

rainfall spatial distribution, Electrical engineering. Electronics. Nuclear engineering, runoff simulation, Rainfall-Runoff-Inundation model, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
gold