Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PyComm: Malicious commands detection model for python scripts

Authors: Zhou, Anmin; Huang, Tianyi; Huang, Cheng; Li, Dunhan; Song, Chuangchuang;

PyComm: Malicious commands detection model for python scripts

Abstract

Python is a concise language which can be used to build lightweight tools or dynamic object-orientated applications. The various attributes of Python have made it attractive to numerous malware authors. Attackers often embed malicious shell commands into Python scripts for illegal operations. However, traditional static analysis methods are not feasible to detect this kind of attack because they focus on common features and failure in finding those malicious commands. On the other hand, dynamic analysis is not optimal in this case for its time-consuming and inefficient. In this paper, we propose PyComm, a model for detecting malicious commands in Python scripts with multidimensional features based on machine learning, which considers both 12 statistical features and string sequences of Python source code. Meanwhile, three comparison experiments are designed to evaluate the validity of proposed method. Experimental results show that presented model has achieved an excellent performance based on those practical features and random forest (RF) algorithm, obtained an accuracy of 0.955 with a recall of 0.943.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!