Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ figsharearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
figshare
Other literature type . 2023
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
figshare
Other literature type . 2023
License: CC BY
Data sources: Datacite
SAR and QSAR in Environmental Research
Article . 2023 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

QSAR classification model for diverse series of antifungal agents based on binary coyote optimization algorithm

Authors: A.M. Al-Fakih; M.K. Qasim; Z.Y. Algamal; A.M. Alharthi; M.H. Zainal-Abidin;

QSAR classification model for diverse series of antifungal agents based on binary coyote optimization algorithm

Abstract

One of the recently developed metaheuristic algorithms, the coyote optimization algorithm (COA), has shown to perform better in a number of difficult optimization tasks. The binary form, BCOA, is used in this study as a solution to the descriptor selection issue in classifying diverse antifungal series. Z-shape transfer functions (ZTF) are evaluated to verify their efficiency in improving BCOA performance in QSAR classification based on classification accuracy (CA), the geometric mean of sensitivity and specificity (G-mean), and the area under the curve (AUC). The Kruskal-Wallis test is also applied to show the statistical differences between the functions. The efficacy of the best suggested transfer function, ZTF4, is further assessed by comparing it to the most recent binary algorithms. The results prove that ZTF, especially ZTF4, significantly improves the performance of the original BCOA. The ZTF4 function yields the best CA and G-mean of 99.03% and 0.992%, respectively. It shows the fastest convergence behaviour compared to other binary algorithms. It takes the fewest iterations to reach high classification performance and selects the fewest descriptors. In conclusion, the obtained results indicate the ability of the ZTF4-based BCOA to find the smallest subset of descriptors while maintaining the best classification accuracy performance.

Country
Malaysia
Keywords

Antifungal Agents, Area Under Curve, Animals, Quantitative Structure-Activity Relationship, QD Chemistry, Coyotes, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green