Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quadratic Unconstrained Binary Optimization for the Automotive Paint Shop Problem

Authors: Pieter Debevere; Masahiko Sugimura; Matthieu Parizy;

Quadratic Unconstrained Binary Optimization for the Automotive Paint Shop Problem

Abstract

The Binary Paint Shop Problem (BPSP) is a combinatorial optimization problem which draws inspiration from the automotive paint shop. Its binary nature, making it a good fit for Quadratic Unconstrained Binary Optimization (QUBO) solvers, has been well studied but its industrial applications are limited. In this paper, in order to expand the industrial applications, QUBO formulations for two generalizations of the BPSP, which are the Multi-Car Paint Shop Problem (MCPSP) and the Multi-Car Multi-Color Paint Shop Problem (MCMCPSP), are proposed. Given the multiple colors, the MCMCPSP is no longer natively binary which increases the problem size and introduces additional constraint factors in the QUBO formulation. Resulting QUBOs are solved using Scatter Search (SS). Furthermore, extensions of the SS that can exploit k-hot constrained structures within the formulations are proposed to compensate the additional complexity introduced by formulating non-binary problems into QUBO. Since no public benchmark database currently exists, random problem instances are generated. Viability of the proposed QUBO solving methods for the MCPSP and MCMCPSP, is highlighted through comparison with an integer-based Random Parallel Multi-start Tabu Search (RPMTS) and a greedy heuristic for the problems. The greedy heuristic has negligible computational requirements and therefore serves as a lower bound on the desired performance. The results for both problems show that better results can be obtained than the greedy heuristic and integer-based RPMTS, by using the novel k-hot extensions of the SS to solve the problems as QUBO.

Related Organizations
Keywords

k-hot constraints, Electrical engineering. Electronics. Nuclear engineering, evolutionary algorithms, quadratic unconstrained binary optimization, scatter search, Automotive paint shop, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold