
Abstract Current research efforts in parallel architecture usually evolve from designs of a processor-memory-connection architecture with rudimentary facilities for synchronization and communication, which are often found to be inadequate to support the more sophisticated usages. In order to remedy this problem, we favor a top-down design, where the primitive operations are selected via a careful and thorough analysis of the high-level general purpose applications to be supported by the architecture. In this paper, we study how a high-level process-synchronization specification, presented in the path expression language, can be translated into a fully parallel implementation on an MIMD shared memory architecture and what primitive support facilities are necessary to achieve this. Primary emphasis is obviously on the simplicity of the system, the low synchronization overhead of the algorithm, the efficiency of the primitives, and the relative ease of system implementation.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
