Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The International Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.24406/pu...
Conference object . 2024
Data sources: Datacite
Copernicus Publications
Other literature type . 2024
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigation on Relative Pose Regression for Multi-Camera Setups with Neural Radiance Fields

Authors: T. Kullmann; P. Hübner; T. Wirth; A. Kuijper; A. Kuijper; D. Iwaszczuk;

Investigation on Relative Pose Regression for Multi-Camera Setups with Neural Radiance Fields

Abstract

Abstract. Neural Radiance Fields (NeRFs) are a novel approach that is being intensively investigated in 3D scene reconstruction and similar fields to overcome challenges of conventional methods. In this paper, we address the problem of estimating missing camera poses in a six degrees of freedom setting, pushing the capabilities of NeRFs to address scenarios where only the primary camera’s pose is known. Specifically, we focus on dual-camera setups with this constraint. Our core contribution is a novel pose correction model that operates alongside an unmodified NeRF model, for which we have chosen Nerfacto in the Nerfstudio framework. The pose correction model learns the necessary relative translation and rotation adjustments for the secondary camera solely through the NeRF loss. This allows us to integrate our correction model directly into the Nerfacto training pipeline without altering the core functionality. Through extensive experiments on different camera configurations in a synthetic scene, we rigorously evaluate our model’s performance across diverse scenarios, pushing it to its limits. Our findings reveal that our model can effectively learn pose correction parameters within a constrained range, with increased sensitivity to larger translations and particular challenges in rotation corrections. This research highlights the potential of NeRFs for machine learning-driven 3D reconstruction on dual- and multi-camera platforms, expanding the applicability of NeRFs to more complex, real-world setups despite the inherent challenges.

Related Organizations
Keywords

Research Line: Computer vision (CV), LTA: Generation, capture, processing, and output of images and 3D models, Technology, 3D Graphics, Research Line: Computer graphics (CG), T, Engineering (General). Civil engineering (General), Branche: Information Technology, TA1501-1820, Research Line: Machine learning (ML), Applied optics. Photonics, TA1-2040, Neural networks, Camera based systems

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold