Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Visualization and Computer Graphics
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Self-Supervised Learning of Event-Guided Video Frame Interpolation for Rolling Shutter Frames

Authors: Yunfan Lu; Guoqiang Liang; Yiran Shen; Lin Wang;

Self-Supervised Learning of Event-Guided Video Frame Interpolation for Rolling Shutter Frames

Abstract

Most consumer cameras use rolling shutter (RS) exposure, which often leads to distortions such as skew and jelly effects. These videos are further limited by bandwidth and frame rate constraints. In this paper, we explore the potential of event cameras, which offer high temporal resolution. We propose a framework to recover global shutter (GS) high-frame-rate videos without RS distortion by combining an RS camera and an event camera. Due to the lack of real-world datasets, our framework adopts a self-supervised strategy based on a displacement field, a dense 3D spatiotemporal representation of pixel motion during exposure. This enables mutual reconstruction between RS and GS frames and facilitates slow-motion recovery. We combine RS frames with the displacement field to generate GS frames, and integrate inverse mapping and RS frame warping for self-supervision. Experiments on four datasets show that our method removes distortion, reduces bandwidth usage by 94 percent, and achieves 16 ms per frame at 32x interpolation.

An earlier version of this paper (ID: 1845) was submitted to ICCV 2023 in March 2023. The work has been substantially revised and accepted by IEEE Transactions on Visualization and Computer Graphics (TVCG)

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Robotics, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Robotics (cs.RO)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green