
Large language models (LLMs) have revolutionized code generation, automating programming with remarkable efficiency. However, these advancements challenge programming skills, ethics, and assessment integrity, making the detection of LLM-generated code essential for maintaining accountability and standards. While, there has been some research on this problem, it generally lacks domain coverage and robustness, and only covers a small number of programming languages. To this end, we propose a framework capable of distinguishing between human- and LLM-written code across multiple programming languages, code generators, and domains. We use a large-scale dataset from renowned platforms and LLM-based code generators, alongside applying rigorous data quality checks, feature engineering, and comparative analysis using evaluation of traditional machine learning models, pre-trained language models (PLMs), and LLMs for code detection. We perform an evaluation on out-of-domain scenarios, such as detecting the authorship and hybrid authorship of generated code and generalizing to unseen models, domains, and programming languages. Moreover, our extensive experiments show that our framework effectively distinguishes human- from LLM-written code and sets a new benchmark for this task.
FOS: Computer and information sciences, Computation and Language, Computation and Language (cs.CL)
FOS: Computer and information sciences, Computation and Language, Computation and Language (cs.CL)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
