
arXiv: 2412.11557
With the increasing availability of multimodal data, many fields urgently require advanced architectures capable of effectively integrating these diverse data sources to address specific problems. This study proposes a hybrid recommendation model that combines the Mixture of Experts (MOE) framework with large language models to enhance the performance of recommendation systems in the healthcare domain. We built a small dataset for recommending healthy food based on patient descriptions and evaluated the model's performance on several key metrics, including Precision, Recall, NDCG, and MAP@5. The experimental results show that the hybrid model outperforms the baseline models, which use MOE or large language models individually, in terms of both accuracy and personalized recommendation effectiveness. The paper finds image data provided relatively limited improvement in the performance of the personalized recommendation system, particularly in addressing the cold start problem. Then, the issue of reclassification of images also affected the recommendation results, especially when dealing with low-quality images or changes in the appearance of items, leading to suboptimal performance. The findings provide valuable insights into the development of powerful, scalable, and high-performance recommendation systems, advancing the application of personalized recommendation technologies in real-world domains such as healthcare.
10 page, accpted by Conf-SMPL conference
FOS: Computer and information sciences, Computer Science - Databases, Databases (cs.DB), Information Retrieval (cs.IR), Computer Science - Information Retrieval
FOS: Computer and information sciences, Computer Science - Databases, Databases (cs.DB), Information Retrieval (cs.IR), Computer Science - Information Retrieval
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
